Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Mini Rev Med Chem ; 2022 Jun 16.
Article in English | MEDLINE | ID: covidwho-2235489

ABSTRACT

Reprogrammed cell metabolism has been observed in a wide range of viral infected cells. Viruses do not have their metabolism; they rely on the cellular metabolism of the host to ensure the energy and macromolecules requirement for replication. Like other viruses, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) does not own its metabolism, but viral infected cells adopt aberrant cell metabolism. Infected viral cells, uses the energy and macromolecules to make their own copies, to do so they need to increase the rate of metabolism to ensure the requirement of macromolecules In contrast, the cellular metabolism of noninfected cells is more plastic than infected cells. Therefore, it is essential to examine the virus infection in the context of metabolic alterations of host cells. A novel therapeutic approach is urgently required to treat highly infectious COVID-19 disease and its pathogenesis. Interference of glucose metabolism might be a promising strategy to determine COVID-19 treatment options. Based on the recent research, this mini-review aims to understand the impact of reprogrammed cell metabolism in COVID-19 pathogenesis and explores the potential of targeting metabolic pathways with small molecules as a new strategy for the development of a novel drug to treat COVID-19 disease. This type of research line provides new hope in the development of antiviral drugs by targeting hijacked cell metabolism in case of viral diseases and also in COVID-19.

2.
Viruses ; 14(1)2021 12 31.
Article in English | MEDLINE | ID: covidwho-1580398

ABSTRACT

We report the discovery of several highly potent small molecules with low-nM potency against severe acute respiratory syndrome coronavirus (SARS-CoV; lowest half-maximal inhibitory concentration (IC50: 13 nM), SARS-CoV-2 (IC50: 23 nM), and Middle East respiratory syndrome coronavirus (MERS-CoV; IC50: 76 nM) in pseudovirus-based assays with excellent selectivity index (SI) values (>5000), demonstrating potential pan-coronavirus inhibitory activities. Some compounds showed 100% inhibition against the cytopathic effects (CPE; IC100) of an authentic SARS-CoV-2 (US_WA-1/2020) variant at 1.25 µM. The most active inhibitors also potently inhibited variants of concern (VOCs), including the UK (B.1.1.7) and South African (B.1.351) variants and the Delta variant (B.1.617.2) originally identified in India in pseudovirus-based assay. Surface plasmon resonance (SPR) analysis with one potent inhibitor confirmed that it binds to the prefusion SARS-CoV-2 spike protein trimer. These small-molecule inhibitors prevented virus-mediated cell-cell fusion. The absorption, distribution, metabolism, and excretion (ADME) data for one of the most active inhibitors, NBCoV1, demonstrated drug-like properties. An in vivo pharmacokinetics (PK) study of NBCoV1 in rats demonstrated an excellent half-life (t1/2) of 11.3 h, a mean resident time (MRT) of 14.2 h, and oral bioavailability. We expect these lead inhibitors to facilitate the further development of preclinical and clinical candidates.


Subject(s)
Antiviral Agents/pharmacology , SARS-CoV-2/drug effects , Virus Internalization/drug effects , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Biological Availability , Cell Line , Cell Survival/drug effects , Coronavirus/classification , Coronavirus/drug effects , HIV Fusion Inhibitors/chemistry , HIV Fusion Inhibitors/pharmacokinetics , HIV Fusion Inhibitors/pharmacology , Humans , Protein Binding , Rats , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacokinetics , Small Molecule Libraries/pharmacology , Spike Glycoprotein, Coronavirus/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL